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This communication reports trajectory calculations on the
nominal [3,3] sigmatropic rearrangement of 1,2,6-heptatriéne,
The reaction has been studied experimentally by Roth éaho
reported trapping biradical intermedi&evith O,. This result was
consistent with earlier studies on a dimethyl derivatigé1 and
on a bicyclic analogugboth of which had provided stereochemical
evidence for at least some component of a biradical pathway.
However, by extrapolation of product ratios to infinite @ressure,
Roth et al. deduced that roughly half of the rearrangemeittof
3 occurred concertedly, without formation of an interceptible
intermediaté.

If the mechanism of Roth et al. were correct, three transition
structures ought to exist on the PES betwgand3: TS;—.;, TS, 3,
and the concerted TS;. However, two of us (D.A.H. and W.T.B.)
have reported that T,S; cannot be found at either the CASSCF-
(8,8) or (U)B3LYP level of theory:> To rationalize the theoretical
and experimental results, a reaction-path bifurcation, following the
rate-determining TS.,, was proposed.The present trajectory

calculations were designed to test whether this hypothesis would

produce reaction dynamics that were consistent with Roth’s
experimental results.

A direct-dynamics CASSCF(8,8) trajectényas launched from
TS1—, with just 0.1 kcal/mol kinetic energy in thE— 2 reaction
coordinate. Not unexpectedly, it led to biradi@alHowever, two
things were interesting about this trajectory. First, it revealed the
existence of a secondary minimu2g, for the biradical. At the
CASPT2(8,8)//ICASSCF(8,8) levél2awas found to be 0.14 kcal/
mol higher in enthalpy than conformati@b, previously located.
Second, the formation &a was followed by an oscillation of the
C4—C5 bond that increased in amplitude and then decreased agai
over ~200 fs.

No other bond ir2 exhibited this behavior. A second trajectory,
identical in all respects to the first, except with deuterium in place
of H10, failed to show a C4C5 oscillation of similar character
(Figure 2). Apparently the out-of-plane bend of the-G810 bond
is nearly in resonance with the €€5 stretch, and this resonance
is detuned by the H/D substitution. In fa2g has two normal modes
of CASSCF(8,8) harmonic frequerfcy41 and 805 cm, which
are combinations of C3H10 out-of-plane bend and €45 stretch.

The C3-H10 bend becomes highly activated on formation of
2afrom TS, because, as previously noted]lylic stabilization
of the biradical is not possible in TS;, but can be achieved ih
by bringing H10 into the C+C2—-C3 plane. The drop in potential
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Figure 1. CASSCF(8,8)/6-31G* relative potential energies of the key
stationary points for the title reaction.
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nFigure 2. Oscillation of the C4C5 bond of biradical following its
formation from TS-,. Blue line: unlabeled compound. Red line: D in
place of H10.
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in a C3-H10 local bending mode. The conversion of this local
mode into the 741 and 805 crhnormal modes oRa involves
exchange of the kinetic energy between the-€30 out-of-plane
bend and the C4CS5 stretch. We believe that this is responsible
for the oscillation seen in Figure 2.

The semiempirical simulation described below suggests that there
are chemical consequences of this dynamic behavior. They arise
from the fact that conversion &to 3 requiresboththe C3-H10
bond to be bent back out of the plane and the-C% bond to be
broken? Neither geometry change alone can conweirtto 3, via

energy accompanying the development of allylic resonance mustTS, ..
be matched by an increase in kinetic energy, which appears initially ~ Since a trajectory from TS, solely along the reaction coordinate
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leads to2a, we hypothesized that any direct path from,TSto 3

via TS-3 must require some combination of real-frequency
vibrational modes, as well as motion along the reaction coordinate.
To assess what combination of modes might be effective, we
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calculated a linear-synchronous-transit (LST) path from-E%0 the same TS are not necessarily prohibitedtWhile it is true that
TS,—3 in mass-weighted Cartesian coordinates. The normalized the steepest-descent path from a TS can lead only to one pAdduct,
vector was then expressed as a linear combination of the normaladditional products may sometimes be formed by dynamically
modes? The signs of the linear-combination (LC) coefficients were favored non-steepest-descent paths.

te;]kerll to be the_relatlve f|c;hasehs of th_e normalf—mode_ motions that Acknowledgment. We thank the NSF (grant CHE-9876387 to
shou d be combined to e ect_t e deS|re_d trans ormatlon._ Indeed, ag « = and CHE-9909893 to W.T.B.) for support of this work.
trajectory, started from T;S; with zero-point-energy (ZPE) in each

of the normal modes and 1.04 kcal/m®T at 250°C) in the Supporting Information Available: AM1-SRP parameters and fits
reaction coordinate avoided the biradi@nd gave the product to the ab initio results (PDF). This material is available free of charge
3. We then repeated the procedure with a LST vector calculated via the Internet at http://pubs.acs.org.
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IconOdaStl_c Condus_lons' ,FIrSt’ the dynamics of bl.ra.ditﬂhggests .. (15) Itis well-known that several products can arise from a common “plateau”
that even intermediates in relatively deep PE minima can exhibit region on a PES, but the present PES does not have such a feature, and
nonstatistical behavior. Second, the bifurcation occurring at.TS so the dynamic bifurcation at the first TS is all the more striking.

shows that mechanisms in which more than one product arises from JA026232A

J. AM. CHEM. SOC. = VOL. 124, NO. 27, 2002 7897



